Linearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems
نویسندگان
چکیده
منابع مشابه
Linearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems
We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...
متن کاملLinerarized numerical homogenization method for nonlinear monotone parabolic multiscale problems
We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...
متن کاملNumerical homogenization methods for parabolic monotone problems
In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A−stable or explicit stabilized methods). We discuss...
متن کاملFinite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems
We propose a multiscale method based on a finite element heterogeneous multiscale method (in space) and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with multiple scales due to spatial heterogeneities varying rapidly at a microscopic scale. The multiscale method approximates the homogenized solution at computational cost independent of the small scale b...
متن کاملAnalysis of the heterogeneous multiscale method for parabolic homogenization problems
The heterogeneous multiscale method (HMM) is applied to various parabolic problems with multiscale coefficients. These problems can be either linear or nonlinear. Optimal estimates are proved for the error between the HMM solution and the homogenized solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multiscale Modeling & Simulation
سال: 2015
ISSN: 1540-3459,1540-3467
DOI: 10.1137/140975504